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1. Introduction

The integrity of components such as pressure vessels
and pipe work, are for chemical and nuclear power
plants of upmost importance. For proof of the integrity
such methods as stress analysis, fracture mechanics and
probabilistic analysis are employed. The use of com-
puters cannot be avoided. A variety of programs should
be available, so that costs can be optimized.

The following three examples show the application
cf the methods stress analysis, fracture mechanics and
probabilistic analysis as they are used by engineers
'1-31 

or in Research Institutes t4-61.

2. Example otpressure vessel nozzle"

A nozzle in the transition zor'e "shell/head" of a
custom made heat exchanger was analyzed [2]. Due to
geometry a three dimensional modelling was required.
Fig. 1 shows the geometry of the model used for analy-
sis. The model has 5500 three-dimensional, 8 nodal
point elements or 7600 nodal points.

Eleven temperature transients of the cooling media
sodium were conservatively reduced to five transients.
Ihe internal pressure of the secondary loop, connecting
pipe loads and restraining forces had to be considered.
Ihe temperature fields were analyzed with the program
system ANSYS, whereas for the stress analysis the
program system NASTRAN was used. Fig. 2 and fig. 3
thow the temperature and the stress distribution in a
section of the bodv at a certain time of a transient.

J029-5493/86/$03.50 o Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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The nonlinear characteristic of the heat transfer
mechanism was considered in the thermal analysis.

The material used was steel X6 CrNi 1811 (1.4948).

STRESS ANALYSIS INCORPORATING FRACTURE MECTIANICS AND MATT,RIAIS
ASPECTS FOR COMPONENTS T]NDER COMPLEX LOADING

P.H. HIRT, N. JAUSSI and M. PRODAN
MOTOR-COLUMBUS Consulting Engineers Inc., Baden, Switzerland

Received December 1985

Th€ titlc deals with a complex subject, Stress analysis with consideration of fracture mechanics and material propertios is
subjact to research and development worldvride. A final answer is not possible. This is only au attempt to discuss the problem.

In the following, three examples are discussed. Due to the size of the problems, extensive use of references (with more
detailed information) is made. The examples are: a pressure vessel nozzle, a disc with crack, and a thick walled vessel.

Fig. 1. Finite element mesh of the vessel nozzle.
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Fig. 2. Isotherms.

2.1. Stress limitations

Following the stress analysis load combinations

(stress superpositions at the stress component level)

were made and compared with the allowable stress

limits of the ASME Code or the relevant code cases-

The comparison of the allowable stresses was made with

the help of the post processor CASAFE. Such a post

processor is normally not available with general purpose

FE-programs. The FE-analysis produces on each ele-

ment node six stresses, three normal stresses and three

shear stresses. For the code calculation these stresses

had to be added, averaged or linearized per stress com-
ponent and then the principal stresses calculated. The

stress intensities P*, P- * P, arc differences between
the three principal stresses.

The stress intensities were only calculated on previ-
ously selected locations (sections through the wall).
CASAFE compares the following stresses with the al-

lowables:
- primary stresses (P*, P,r, + Pb),
- creep (for wall temperature> 427"C for austenite, an

option in the program),
stress range (prirnary and secondary stresses without
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STRESS INTENSITY
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Fig. 3. Iso-stress intensities

peak) and determination whether the K"-factor is
relevant,
cumulative usage factor.
The stress limitations were not exceeded as table 1

shows. The symbols Sru,, and Eur2 are stress allowables,
t, and tvm are operating hours or allowable operating
hours for the actual stresses and are used for the creep
evaluation.'

Stress ran3e/3sm is calculated for the determination
whether the K"-factor is to be determined (K" > 1). It is
used in the evaluation for the cumulative usage factor
U.

't

2.2. Data processing

To allow for the data transfer from ANSYS to
NASTRAN and to the post processor, the analysis was

made with identical eight node three-dimensional ele-
ments.

The amount of data and data handling was large.

Several hundred time steps and integration steps for the
determination of the transient temperature distribution

at 7600 nodes were necessary. For the determination of

the stresses, again the 7600 nodes model was used, and

on each node six stresses were determined. With 27
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Table 1
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P*/Srutt (r- + po)

Szulz

tr/t,^ Stress range "
3s,n

0.36 0.24 0.01 1.748 0.1616

u K"- factor  :3 .33.

basic loads and the 30-40 load combinations, millions
of data have to be processed. The data were managed
*itn cesAFE.

Since the stress intensities were determined only in
150 predetermined sections of the FE-model, the data to
be managed was substantially reduced. The 150 sections
were fully evaluated in accordance with the design
specification (ASME code, subsection NB and code
cases). Load combinations are made by the program
CASAFE. Therefore, loads were combined only on the
150 preselected sections.

The above discussed and in [2] extensively covered
analysis of a 3-D-model pressure vessel nozzle was,
together with another problem on the same vessel and
in close location (lifting lug), within one half year
completed with the costs in the range of SFr. 100000.-.
We believe that the costs are typical for the size of the
problem. In ref. [5,6] a problem of comparable size is
discussed.

3. Example "disc with surface crack"

A fracture mechanic analysis had to be performed on
the disc with surface crack as a model for an en-
gineering component. With the help of this example the
value of fracture mechanics for stress analysis and safety
analysis shall be demonstrated [4]. Fracture mechanics
extends stress analysis such that cracked parts can be
evaluated. Cracks represent singularities in stress and
strain fields. The theory of fracture mechanics accepts
parameters such as stress intensity factor K or the
so-called ,I-integral to characterize the load condition in
the vicinity of a crack. They are used to prove the safety
margin to fracture with fracture mechanics analysis.
Computer programs are already available to calcula te K
and J for a large number of crack types and load
combinations.

How it is done is suggested by fig. 4. For this
configuration the stress intensity factor K can be
numerically determined as follows:

* :  o{! .o F(+ ,  o,  +\ ,  h/w >.-  r ;  c/wq 0.25;
S  \ c '  t l '  /

(1 )

Fig. 4. Semi-elliptical surface crack in a tensile disc.

The symbols of eqs. (1) and (2) are explained by fig 4.
Values of the correction function F(a/c, g, a/t) are
tabulated in table 2, based on 3-D linear elastic FE
calculations by Raju and Newman. With an easy pro-
gramable 2-D Lagrange interpolation (program IN-
TERP) the correction function F(a/c, e, a/t) can be
calculated for values inbetween the values tabulated in
table 2.

The practical importance of half elliptic surface
cracks is based on its application when safety margins
to brittle fracture, or stable crack grawth due to fatigue,
have to be evaluated. It is understood that a disc is a
plate-like body, which is loaded perpendicular to its
thickness. Similar results are also available for bent
specimens (plates) with surface cracks and other typical
cracks of plant components. r

The results can be applied for the following prob-
lems: Determination of critical crack sizes, calculation
of critical loads, determination of required toughness,
prediction of undercritical crack growth and arrange-
ments of tests.

The material used for the tests in ref. [4] is ferritic
perlitic fine grain steel BH 43 W (St.E 43).

4. Example ".thick walled containero'

A probabilistic failure analysis had to be performed
for a container carrying highly toxious contents [3]. In

*: Ir '"(si,"+ . (:) ' .o,'*;" do. (2)

L-
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Table 2

Values of the function F(a/c, Q, a/t) based on 3-D linear elastic FE calculations by Raju and Newman
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a / c  a / t  0 [ ' ]

0.00 TT.25 22.50 33.75 45.00 56.25 61.50 78.75 90.00

0.20
0.40
0.60
1.00
2.00
0.20
0.40
0.60
1.00
2.00
0.20
0.40
0.60
1.00
2.00
0.20
0.40
0.60
1.00
2.00

0.20
0.20
0.24
0.20
0.20
0.40
0.40
0.40
0.40
0.40
0.60
0.60
0.60
0.60
0.60
0.80
0.80
0.80
0.80
0.80

0.617
0.767
0.916
7.174
0.821
0.724
0.896
1.015
1.229
0.848
0.899
1.080
T.T72
1.355
0.866
1.190
1.318
1.353
1.464
0.876

0.650
0.781
0.919
T.I45
0.749
0.775
0.902
1.004
7.206
0.818
0.953
1.075
I.I49
1.327
0.833
1.217
t.285
1.304
1.410
0.839

0.754
0.842
0.942
1.105
0.740
0.883
0.946
1.009
1.757
0.759
1.080
1.113
7.142
t.256
0.117
1.345
1.297
7.265
t.3t4
4.775

0.882
0.923
0.982
1.082
0.692
1.009
1.010
1.033
t.126
0.708
1.237
7.r79
1.160
T.2T4
0.716
1.504
7.327
1.240
1.234
0.]n

0.990
0.998
1.024
7.067
0.646
L.122
1.075
r.062
1.104
0.659
1.384
7.241
7.782
1 . 1 8 1
0.664
1.651
7.374
r.243
1.193
0.661

1.012
1.058
1.059
1.058
0.599
L 2 2 2
r.736
1.093
1.088
0.609
1.501
7.302
7.202
1 . 1 5 3
0.610
r.759
1.408
t.245
1.150
0.607

I.I28
1.103
1.087
1.053
0.5s2
t.297
1.184
r.727
1.075
0.560
1.581
1.341
1.218
7.t29
0.560
1.824
7.437
r.260
1.r34
0.554

1,161
7.729
1.104
1.050
0.5r2
1.344
r.2'1.4
1 .139
1.066
0.519
7.627
t.363
r.221
1 . 1 1 3
0.519
1.846
t.446
]-264
1 . 1 1 8
0.513

I.113
1 . 1 3 8
1.110
1.049
0.49s
7.3s9
I.225
r.745
r.062
0.501
I.642
7.310
r.230
1.107
0.501
1.651
7.447
7.264
1.r72
0.496

fig. 5 the geometry and the most important dimensions
are shown, fig. 6 shows the nomenclature and the as-
sumptions made for the probabilistic analysis. The
material assumed was cast steel GS 50.

4.1. Probability of failure by buckling

The deterministic calculations are the basis of the
following probabilistic analysis. The allowable maxi-
mum pressure p buckt.z was determined to be 400 bar.
The actual external pressure p is 300 bar. The trivial
criteria of non failure p < p buckl.z is satisfied.

For the probabilistic analysis the symbols of fig. 6 Fig. 6. Probability density functions of the load and the struct-

ural resistance with related notations.

,So : mean value of the load, e.g. external pressure,

R 0 : mean value of the resistance, e.g. buckling load,

,Sq : " maximum" load acc. to the deterministic ap-

proach,

R p : " minimum" resistance acc. to the deterministic

approach,

p,q : fractions (see shaded areas),

/0 : R o/So: safety factor acc. to the mean values,

v: Ro/S, : safetY factor acc. to min R/max S,

Pr : failure ProbabilitY,

f  , ( x )
f  , ( x )

: probability density function of the load,
: probability density function of the resistance.Fig. 5. Geometry of the thick-walled vessel.
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pr :1(1) :  P(R < s)  :  I r *

F , ( * ) :P(0 .R<x) : f r r ,

f " o o c o  I
r r ( / ) :1  -  I  f  f  p ,Q)t4(r ) ) '  f , ( r )  a*  l .  (6)

L " o  r : o  I

were used and the following assumptions were made:
Ä o  : 2 0 0 0  b a r  ( 5  x ( p b u c k l , z : 4 0 0  b a r ) ) ,

,So : 22A bar (. p: 300 bar),
oR : 220 bar 

\ 
standard deviations of Ä and ,S

os' : 50 bar J @, P bwkt.z and P).
The failure quotient pr is calculated with the ad-

ditional assumption of standard distribution and tabu-
lated values from reference books.

Eq. (3) is based on the general eqs. (4) and (5) where p,
is expressed by the integral

The probability of failure F{t) in the time interval
(0, r) is:

With the help of the reduced equations derived from eq.
(6) Fr(t) is calculated. The method is extensively ex-
plained in [3].

An attempt shall be made to connect these three ana-
lytical methods.

Even though only partial aspects have been consid_
ered, a general solution for the analysis of complex
components seems possible.

It is obvious that these are not only partial problems
but overall and interdisciplinary tasks.

A common problem is that a component is fully
analyzed under the assumption of no flaws, but in the
course of inspection, and after manufacturing, flaws are
detected.

For the example of the pressure vessel nozzle, assum_
ing a semi-elliptic crack, the large amount of time and
money spent for the stress analysis is now useless.

Possible solution: The stress analysis is not without
value, but it is not the only evaluation basis. It must be
combined with fracture mechanics. But the so-called
influence (correction) functions, which are necessary for
calculating the fracture mechanics parameter such as K
and J, are more complex than in the case of the relative
simple configuration of the disc. Also, the material
aspects must be expanded to include K and J.
The following methods are possible:
(1) Hand calculations with diagrams and tables from

fracture mechanics handbooks, codes and regu-
lations or other references.

(2) New calculations of the relevant fracture mechanics
parameter such as J and K with expensive com-
puter programs, a de facto new analysis of the
already analyzed components.

The application of the results is to some extent doubt-
ful. In practice it is generally felt that repair is better
than the existence of some small flaws.

Another connection would be between the fracture
mechanics example (disc) and the probabilistic analysis
(thick walled vessel). The question in this case would
be: how to proceed in the case of a flaw in the thick
walled vessel? The solution in this case is the so-called
probabilistic fracture mechanics, developed from relia-
bility analysis and deterministic fracture mechanics.
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F , ( t ) - 1 -  ( 7 - p , ) ' ,

F r ( t : 1 0 0 0  y )  =  1 . 5  x  1 0 - 1 2 ,

F , ( t )  -  1 -  exp( -p , t ) , ,

F r ( /  :  1 0 0 0  y )  =  1 . 5  x  1 0 - 1 2 .

The quoted results are explained and commented in ref.
[3]. Due to the extent of reasoning necessary only the
remark to [3] shall be made that a probabilistic relia-
bility analysis is difficult for two reasons:

there is a variety of technical equipment to consider,
-'each component is exposed to a variety of influences

and mechanism which can lead to failure.
Failure data and statistics from the conventional

pressure vessel industry were used for comparison with
these theoretical results of the probabilistic analysis.

5. Discussion

Aspects of stress analysis, fracture mechanics and
probabilistic failure of components have been discussed.

(7)

(8 )
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ZUSAüUENPASST]NG

Der  T iE ,e l  sp r i ch t  e i ne  ve rw i cke l t e  Thema t , i k  an .  Das  Thema  "Fes t i g -
ke i t , sana lyse  un te r  Be rücks  i ch t i gung  von  B ruch rnechan ik  und  Werk -
s to f f aspek ten "  i s t ,  we l twe i i  Gegens tand  von  Fo rschungs -  und  En t -
w i ck l ungsa rbe i t en .  Es  kann  demen tsp rechend  i n  d i esem Re fe ra t  n i ch t
absch l i essend  behande l t  we rden .  Es  so l l  v i e lmeh r  ve rsuch t  we rden ,
e i nen  Be i t r ag  zu t  D i skuss ion  ob ige r  P rob lema t i k  zü  l e i s t en .

De r  Vo r t r ag  be fass t  s i ch  m i t  d re i  Be i sp ie l en  zu  dem im  T i t e l  ge -
nann ten  P rob lemkomp lex .  Dazu  we rden  e i gene  und  Geme inscha f t sa rbe i -
t , en  benu tz t .  Wegen  de r  Fü l I e  de r  behanCe l t , en  F ragen  w i rd  e i ne  kon -
dens ie r t e  Da rs t , e l l ung  m i t  i t i nwe i sen  au f  Re fe renzen  gebo ten .  D ie
Be i sp ie l e  s i nd  e i n  Behä l t e r s tu t zen ,  e i ne  sogenann te  bau te i . l ähn -
I i che  Sche ibe ,  und  e i n  d i ckwand ige r  Behä1E ,e r .

EINFUEERTTNG

Von  besondere r  Bedeu tung  fü r  d ie  S i che rhe i t  von  Nuk lea r -  und
Chemiean lagen  i s t  d i e  I n teg r i t , ä t  i h re r  Komponen ten ,  d .  h .  Be -
hä1 te r ,  Roh r l e i t , ungen  und  ande re r  An lagene lemen te .  Be im  meeha -
n i schen  Nachwe  i s  d i ese r  I n teg r i t ä t  bzw .  de r  Fes t i gke  i t  we rden

u .  ä .  d i e  F le thoden  de r  Spannungsana l l z se ,  de r  p robab i l i s t i s chen

Zuve r l äss igke i t sana l yse  und  de r  B ruchmechan i k  benu tz t .  De r

Einsatz  von Computerprogrammen is t  dabe i  unumgängl  ich  .  Je

nach  A r t  und  Grösse  des  P rob lems  so l l t en  aus  Kos teng ründen  d ie

angewende Ee n  Programme (  FEel /Scha len )  opt  ima I  ausgewäh 1t ,  wer-

den .  Dem Ingen ieu r  muss  a l so  heu te  e i ne  Pa leEEe  von  P rog rammen

fü r  e i ne  angepass te ,  op t ima le  l ösung  de r  Au fgaben  zu r  Ve r f  ü -
gung  s  tehen  .

l .
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rm  fo l genden  w i rd  anhand  d re i e r  Be i sp ie l e  geze ig t ,  w ie  span -
nungsabs i che rungen ,  p robab i l i s t i s che  Ana l ysen  und  B ruchmecha -
n i k  au f  d ruck füh rende  Komponen ten  von  rngen  i eu ren  angewende  t
we rden ,  se i  es  i n  e i ne r  r ngen ieu run te rnehmung  I r  3 ] ,  se i  es
i n  Ve rsuchs -  und  Fo rschungsansE .a l t en  l + ,  51 .

E s  s t e l ] t e  s i c h  d i e  A u f g a b e  r  e i n e  S p a n n u n g s a n a l y s e  d u r c h  z \ t _
f ü h r e n .  G e g e n s t a n d  w a r  e  i n e  N u k l e a r k o m p o n e n t e ,  e  i n  s t u t z e n
u n d  d e r  u e b e r g a n g  z u m  A u s s e n m a n t e l  u n d  z e n t r a l r o h r  e i n e s  s p e -
z i e l l e n  w ä r m e t a u s c h e r s  I z i .  D e r  s t u t z e n  s c h r i e s s t  s i c h  s c h r ä g
d e r  B e h ä l t e r w a n d  a n  ( n i c h t ,  r o t a t i o n s s y m m e t r i s c h  )  ,  w o d u r c h
e i n e  d r e i d i m e n s i o n a l e  l " l o d e r l i e r u n g  n o t w e n d i g  w a r .  F i g .  l
z e i g t  d i e  G e o m e t r i e  d e s  R e c h e n m o d e i . l s .  t 4 i t ,  d i e s e m  F i n i t e -
E l e m e n t e - ( F E - ) l ' 1 0 d e 1 1 ,  b e s t e h e n d  a u s  5 5 0 0  d r e i d i m e n s i o n a l e n
8 - K n o t e n - E l e m e n t e n  o d e r  a u s  r u n d  7 6 0 0  K n o t e n ,  w u r d e  e i n e
F e s t i g k e i E , s a n a l y s e  e r s t , e l l t .  F i i e r b e i  w u r d e  v o n  e i n e m  r e d u -
z i e r t e n  t s e l a s t u n g s p a k e t  a u s g e g a n g e n .  1  1  i n s t a t i o n ä r e  T ? a n -
s i e n t e n  d e r  T e m p e r a t u r e n  d e s  K ü h l m i t t e l s  N a t r i u m  w u r d e n  d u r c h
5  s p a n n u n g s m ä s s  i g  a b d e c k e n d e  T r a n s  i e n t e n  e i n g e g r e n z  t  .  r n n e n -
d r u c k  i n f o l g e  d e s  s e k u n d ä r k r e  i s l a u f  e s ,  R . o h r k r ä f  t e  u n d  v e r -
s p a n n k r ä f t e  a u s  d e m  G e s a m t w ä r n e t a u s c h e r  w a r e n  z o  e r f a s s e n .
D i e  t s e r e c h n u n g e n  d e r  s t a h l s t r u k t u r t e i l e  w u r d e n  m i t  d e n  p r o -
g rammsys temen A I ISYS (Ternpera tu r f  e lde r  )  und  NASTR.AN (Span-
n u n g s -  u n d  v e r s c h i e b u n g s f e l d e r )  a u s g e f ü h r t .  F ü r  e i n e n  e i n z e l n
h e r a u s g e g r i f f e n e n  z e i t p u n k t  e i n e r  T e m p e r a t u r t r a n s i e n t e  z e i g e n
F i g '  2  u n d  3  i n  e i n e m  L ä n g s s c h n i t t  d i e  I s o t h e r m e n  u n d  I s o -
s p a n n u n g e n  (  z w e i  f a c h e  T r e s c a - S p a n n u n g e n  )  .  A u s  d e n  s o g  .  G r u n d -
l a s t ' f  ä 1 1 e n  w u r d e n  L a s t k o m b i n a t i o n e n  e r s t , e 1 l t .  B e i  d e r  T e m p e -
r a t u r b e r e c h n u n g  h t a r e n  d i e  n i c h t , l i n e a r e n  A b h ä n g i g k e i t e n  d e r  r
! ' i ä r m e ü b e r t r a g u n g s m e c h a n i s m e n  a n  d e r  s t r u k t , u r o b e r f l ä c h e  u n d  i n
d e r  s t r u k t u r  z u  b e r ü c k s i c h t i g e n .  D e r  l r l e r k s t o f f  h r a r  d e r  s t a h l
X 6  C r N i  1 8 1 1  ( 1 . 4 9 4 9 ) .

Spannungsabs icherunq

r m  A n s c h l u s s  a n  d i e  s p a n n u n g s a n a l y s e  m u s s t e  d e r  N a c h w e i s  e r -
b r a c h t  w e r d e n ,  d a s s  d  i e  e r r e c h n e t e n  s p a n n u n g e n  i n n e r h a l b  d e r
v o n  A S M E - C o d e  u n d  a n d e r e n  R e g e l w e r k e n  v o r g e s c h r i e b e n e n  G r e n -
z e n  l  i e g e n .  D i e s e  A b s i c h e r u n g  d e r  s p a n n u n g e n  w u r d e  n r i t  e i n e m
d r e  i d i m e n s  i o n a l e n  A b s  i c h e r u n g s g r o g r a m m  C A S A F E  g e m ä s s  A S i , , l E -
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